Oxidative Desulfurization-Fluorination of Methyl Arenedithiocarboxylates.

A Convenient Synthesis of Trifluoromethylated Aromatic Compounds[†]

Manabu KUROBOSHI and Tamejiro HIYAMA*
Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229

Trifluoromethyl-substituted aromatic compounds were obtained by oxidative desulfurization-fluorination reaction of methyl arenedithio-carboxylates using n-Bu₄N⁺H₂F₃⁻ and 1,3-dibromo-5,5-dimethylhydantoin (DBH). Use of N-bromosuccinimide or N-iodosuccinimide instead of DBH afforded difluoro(methylthio)methyl-substituted aromatics.

Aromatic compounds when functionalized by CF₃ group raise the lipophilicity or lower the viscosity of the parent compounds to effect often remarkable biological activities and/or physical properties. Accordingly,¹⁾ a lot of synthetic drugs, agrochemicals and liquid crystalline materials have been developed that involve a CF₃-substituted aromatic moiety. To ease synthesis of CF₃-substituted aromatics, a regio- and chemoselective method for introduction of trifluoromethyl group should be established.

Compounds of type Ar-CF₃ are accessible by conversion of Ar-C(O)OH with SF₄,²⁾ halogen-exchange of Ar-CCl₃ with SbF₃³⁾ or HF,⁴⁾ treatment of Ar-H with CCl₄/HF,⁵⁾ trifluoromethylation of Ar-H by CF₃· or CF₃+ equivalents, or substitution of Ar-Br with CF₃-metal reagents.⁶⁾ However, these methods suffer severe limitations like harmful reaction conditions and use of a highly toxic and/or unstable reagent in addition to low yield and low regioselectivity.

Oxidative desulfurization-fluorination reaction allows us to introduce fluorine atom(s) into an organic molecule under very mild reaction conditions. Extension of this concept has led us to find that methyl arenedithiocarboxylates (Ar-C(S)SMe) are readily converted into Ar-CF $_3$ ⁸⁾ by treatment with tetrabutylammonium dihydrogentrifluoride⁹⁾ (TBA+H $_2$ F $_3$ -) and 1,3-dibromo-5,5-dimethylhydantoin (DBH). Replacing DBH by N-bromosuccinimide (NBS) or N-iodosuccinimide (NIS) has given rise to new compounds of type ArCF $_2$ SMe.

Ar-CF₃
$$\xrightarrow{\text{TBA}^+\text{H}_2\text{F}_3^-, \text{DBH}}$$
 $\xrightarrow{\text{Ar}}$ $\xrightarrow{\text{SMe}}$ $\xrightarrow{\text{TBA}^+\text{H}_2\text{F}_3^-, \text{NBS or NIS}}$ Ar-CF₂SMe

[†]Dedicated to Professor Emeritus Osamu Simamura of The University of Tokyo on the occasion of his 80th birthday.

Starting materials Ar-C(S)SMe are readily accessible by reaction of ArCH₂X and sulfur in the presence of sodium methoxide¹⁰⁾ followed by treatment with MeI or, alternatively, by the reaction of Ar-metal with CS₂ and subsequently with MeI.¹¹⁾ A general procedure for transformation of Ar-C(S)SMe to Ar-CF₃ follows. To a dichloromethane (1.5 mL) solution of Ar-C(S)SMe (0.5 mmol) and TBA⁺H₂F₃⁻ (1.5 mmol) was added DBH (2 mmol) in one portion at 0 °C, and the resulting mixture was stirred for 1 h at room temperature. Work-up¹²⁾ followed by chromatographic purification afforded Ar-CF₃ in good yields.

Results are summarized in Table 1. Starting materials unsubstituted or substituted by an electron-donating group gave trifluorinated products in good yields (entries 1, 8, 12, and 13), whereas those bearing such an electron-withdrawing group as bromine gave only a complex mixture of products. In this case, the target trifluorination product was obtained by use of HF/pyridine (HF/Py, 70/30 wt%) as fluoride ion source (entry 16). Moreover, in combination with HF/Py, any of DBH, NIS, NBS, and NCS gave 1-trifluoromethylnaphthalene from methyl 1-naphthalenedithiocarboxylate in yields of 79%, 63%, 43% and 29%, respectively (entries 2, 3, 4, and 5). On the other hand, substrates containing an electron-rich aromatic ring suffered ring bromination during trifluoromethylation (entry 14). As the starting material of entry 13 was prepared through selective *ortho*-lithiation¹³⁾ of methoxymethyl ether of *p*-cresol followed by treatment with CS₂ and MeI, this example demonstrates the electrophilic and regioselective introduction of a CF₃ group into the aromatic nucleus.

Noteworthy observation is that difluorination products of type Ar-CF₂SMe were obtained upon treatment of the same substrates with TBA⁺H₂F₃⁻ and a halonium ion-generating agent such as bromine (1.5 mmol, entry 7), NBS (1.5 mmol, entry 9), N-bromoacetamide (NBA, 1.5 mmol, entry 10) or N-iodosuccinimide (NIS, 1.5 mmol, entries 6 and 11). Ring bromination occurred again of an electron-rich substrate **1e** (entry 15). The products Ar-CF₂SMe are assumed to be precursors of Ar-CF₃, since Ar-CF₂SMe could be converted into Ar-CF₃ by DBH and TBA⁺H₂F₃⁻.¹⁴⁾ For example, 1-trifluoromethylnaphthalene was obtained from 1-[difluoro-(methylthio)methyl]naphthalene in 83% yield.

$$\frac{\text{CF}_2\text{SMe}}{83\%} \xrightarrow{\text{TBA}^+\text{H}_2\text{F}_3^-, \text{DBH}}$$

The present method allows us an easy preparation of Ar-CF₃ or Ar-CF₂SMe under extremely mild conditions using readily accessible starting materials, are nedithiocarboxylates. Furthermore, CF₃ group can be introduced as planned through regionselective metalation of aromatic compounds. Thus, this methodology should find wide applications particularly in the synthetic study of new drugs, agrochemicals, and electro-optical materials. Studies along this line are progressing in our laboratories.

Table 1. Oxidative desulfurization-fluorination of methyl arenedithiocarbonates^{a)}

Entry	Starting material	X ⁺ (mo	l equi	v.) Product		Yield/% ^{b)}
	C(S)SMe			CF ₃		
1	(1a)	DBH	(4.0)		(2a)	63
2 ^{c)}	1a	DBH	(4.0)	2a		7 9
3 ^{c)}	1a	NIS	(4.0)	2a		63
4 ^{c)}	1a	NBS	(4.0)	2a		43
5 ^{c)}	1a	NCS	(4.0)	2a		29
				CF₂SMe . I		
6	1a	NIS	(3.0)		(3a)	61
7	1a	Br ₂	(3.0)	3 a		38
8	C(S)SMe (1b)	DBH	(4.0)		(2b)	52
9	1b	NBS	(3.0)	CF ₂ SMe	(3b)	69
10	1b	NBA	(3.0)	3b		66
11	1b	NIS	(3.0)	3b		86
12	n -C ₈ H ₁₇ O- \bigcirc -C(S)SMe (1c)	DBH	(4.0)	n-C ₈ H ₁₇ O $-$ CF ₃	(2c)	62
13	OCH ₂ OMe C(S)SMe (1d)	DBH	(4.0)	OCH ₂ OMe CF ₃	(2d)	71
14	MeO (1e)	DBH	(4.0)	MeO Br CF3	(2e)	78
15	1e	NBS	(3.0)	MeO Br CF ₂ SM	⁄1е (3 е)	62

(Table 1 continued)

$$16^{d)}$$
 Br—C(S)SMe (1f) DBH (4.0) Br—CF₃ (2f) 82

a) All the reactions were performed on 0.5 mmol scale. $TBA^+H_2F_3^-$ (2.5 mmol) was used unless otherwise noted. b) Isolated yields. c) HF/Py (1.15 mmol, F-: 10.4 mmol) was used as a fluorinating agent. d) HF/Py (4.4 mmol, F-: 40 mmol) was employed in place of $TBA^+H_2F_3^-$.

References

- 1) "Biomedical Aspects of fluorine Chemistry," ed by R. Filler and Y. Kobayashi, Kodansha Ltd. and Elsevier, Tokyo and Amsterdam (1982); Y. Kobayashi and I. Kumadaki, *Acc. Chem. Res.*, 11, 197 (1978); S. Naemura, *Kinouzairyou*, 11(2), 5 (1991).
- 2) W. R. Hasek, W. C. Smith, and V. A. Engelhardt, J. Am. Chem. Soc., 82, 543 (1960); G. A. Boswell, Jr., W. C. Ripka, R. M. Scribner, and C. W. Tullock, Org. React., 21, 1 (1974).
- 3) D. Aelony, J. Am. Chem. Soc., 56, 2063 (1934).
- 4) J. H. Simons and C. J. Lewis, J. Am. Chem. Soc., 60, 493 (1938).
- 5) A. Marhold and E. Klauke, J. Fluorine Chem., 18, 281 (1981).
- 6) Y. Kobayashi, I. Kumadaki, A. Ohsawa, S. Murakami, and T. Nakano, Chem. Pharm. Bull., 26, 1247 (1978); T. Umemoto and A. Ando, Bull. Chem. Soc. Jpn., 59, 447 (1986); Y. Kobayashi and I. Kumadaki, Tetrahedron Lett., 1969, 4095; K. Matsui, E. Tobita, M. Ando, and K. Kondo, Chem. Lett., 1981, 1719; N. V. Kondratenko, E. P. Vechirko, and L. M. Yagupolskii, Synthesis, 1980, 932; D. M. Wiemers and D. J. Burton, J. Am. Chem. Soc., 108, 834 (1986).
- 7) M. Kuroboshi and T. Hiyama, Synlett, 1991, 909.
- 8) Alternative synthesis of Ar-CF₃ from Ar-C(S)SH with XeF₂: M. Zupan and Z. Bregar, *Tetrahedron Lett.*, **31**, 3357 (1990); that from ArC(SR)₃ with HF/Py and DBH or NBS: D. P. Matthews, J. P. Whitten, and J. R. McCarthy, *Tetrahedron Lett.*, **27**, 4861 (1986).
- 9) P. Albert and J. Cousseau, Bull. Soc. Chim. Fr., 1986, 910.
- 10) F. Becke and H. Hagen, Chem.-Ztg., 93, 474 (1969).
- 11) "Methoden der Organischen Chemie," ed by J. Falbe, Georg Thieme Verlag, Stuttgart (1985), Vol. E5, p. 891.
- 12) The reaction mixture was poured into an aqueous solution of NaHCO₃ and NaHSO₃ and extracted with diethyl ether. The ethereal layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography or thin layer chromatography.
- 13) V. Snieckus, Chem. Rev., 90, 879 (1990).
- 14) The reaction is considered to be initiated by electrophilic reaction of halonium ion with Ar-C(S)SMe to generate Ar-C(=S+X)SMe. Subsequent nucleophilic attack by fluoride ion to the carbocationic center makes C-F bond. The resulting Ar-CF(SX)SMe is again oxidized and substituted by fluoride ion to give a difluorination product Ar-CF₂SMe. Repeated oxidation and substitution of the sulfide bond gives a trifluorination product Ar-CF₃.

(Received February 20, 1992)